

MonsterX CEC SDK
V 1.0.0

SKNET Corporation
2011/04/03

SKNET Corporation
Confidential

2

Change History

V 1.0.0 - Initial release

SKNET Corporation
Confidential

3

CHAPTERS

1. Introduction 4

2. Development Guide 6

3. SDK Function Reference 8

MX_CECMgr_Init 8

MX_CECMgr_Uninit 8

MX_CECMgr_SetDiscoverDevice 9

MX_CECMgr_HasReadData 10

MX_CECMgr_ReadData 11

MX_CECMgr_WriteData 12

SKNET Corporation
Confidential

4

1. Introduction

Consumer Electronics Control (CEC) is a protocol that provides high-level control
functions between all of the various HDMI audio/visual products in a user’s environment.
Through the CEC commands, MonsterX3 device can be used to control the connected
HDMI devices such as:

 Power Up and Down HDMI devices
 Basic video operation such as start/stop, pause, FFWD, FRWD playback.
 Get basic playback information
 Add/Edit/Delete schedule.

It is not compulsory for HDMI device manufacturer to implement all CEC commands.
Also, each manufacturer could optionally implement their own custom CEC commands.
However, if a particular command (opcode) is implemented, it must always be conform
to the HDMI specification. As such, to develop a CEC application, you must obtain a
copy of the HDMI 1.3a specification. In this specification, the CEC specification is
explained in “Supplement 1 – Consumer Electronics Control (CEC)” section.

This SDK allows developers to develop custom CEC applications for

 MonsterX3

OS Platform supported:

 Windows XP (32-bit)
 Windows Vista (32-bit/64-bit)
 Windows 7 (32-bit/64-bit)

Supported HDMI version:

 1.3a

Development tools requirement:

 Visual Studio 2008 with Visual C++ compiler

SDK files:

.¥bin¥MX_CECUtil.exe Pre-compiled sample application file

.¥bin¥MX_CECMgr.dll Core CEC library

SKNET Corporation
Confidential

5

.¥bin¥CECData.ini CEC commands created and saved by MX_CECUtil
application.

.¥src¥ CEC sample application source codes

.¥doc¥UserManual The user manual for the SDK.

SKNET Corporation
Confidential

6

2. Development Guide

Before you begin with the development, you should
1) Have the MonsterX3 application and driver installed.
2) Obtain a copy of the HDMI 1.3a specification

How to start developing a CEC application
1) Create a sample MFC application in Microsoft Visual Studio 2008
2) Add the .¥src¥MX_CECUtil¥CECMgr.cpp and .¥src¥MX_CECUtil¥CECMgr.h into

the sample application’s project.
3) Instantiate a CCECMgr object in the application.
4) Initialize the CCECMgr object by calling the CCECMgr::Init() function.
5) If initialization is successful, you can either create a Windows timer or a slave thread

to monitor for any incoming CEC data. These data could contain information such
as:

 Executed command status (Reason for failure if command failed)
 Miscellaneous information like device logical address, playback status.

6) Below is an example on how to listen for incoming CEC data.

IncomingDataLoop()

{

 BOOL bTemp = FALSE, bHasData = FALSE;

if (g_CECMgr.HasReadData(&bTemp))

 bHasData = bTemp;

 if (bHasData)

 {

 BYTE CECReadData[20];

 Int iNumReadData = 20;

 ZeroMemory(CECReadData, sizeof(CECReadData));

 g_CECMgr.ReadData(CECReadData, &iNumReadData);

 }

}

 If call to ReadData function is successful, CECReadData will contain the incoming CEC

data and iNumReadData will contain the number of data.

SKNET Corporation
Confidential

7

7) Below is an example to write a CEC command

BYTE CECData[5];

ZeroMemory(CECData,sizeof(CECData));

//Send Power on command a DVR1 device

int iTargetDevice;

iTargetDevice = 1; //Logical device address for DVR1 (Please refer to HDMI spec)

CECData[0] = 0x44; //Opcode for remote command (Please refer to HDMI spec)

CECData[1] = 0x40; //Power-On parameter (Please refer to HDMI spec)

g_CECMgr.WriteData(iTargetDevice,CECData,2);

//Broadcast power off command to all connected HDMI devices

iTargetDevice = 0xf //Broadcast address (Please refer to HDMI spec)

CECData[0] = 0x36 //Opcode for Power-Off (Please refer to HDMI spec)

g_CECMgr.WriteData(iTargetDevice,CECData,1);

SKNET Corporation
Confidential

8

3. SDK Function Reference

int MX_CECMgr_Init()

Return
0 – Initialization successful.
2 – Initialization failed

Description
This function loads the CEC library and checks for the existence of MonsterX3
hardware. This is the first function that must be called before calling any other CEC SDK
functions. If value 2 is returned, it is most probably due to the driver or the MonsterX3
device not properly installed.

.
void MX_CECMgr_Uninit()

Description
This function unloads the CEC library. No CEC SDK function should be called after
unloading the CEC library.

SKNET Corporation
Confidential

9

int MX_CECMgr_SetDiscoverDevice(int iDevIndex)

Parameter
int iDevIndex Logical role of HDMI device (0x1 to 0xe)

According to the HDMI specification, the range of
devices’ logical role is as below:
0x0 – TV (Not used as MonsterX3 device is regarded
as TV device)
0x1 – DVR1 0x8 – PLYR2
0x2 – DVR2 0x9 – DVR3
0x3 – TUNER1 0xa – TUNER4
0x4 – PLYR1 0xb – PLYR3
0x5 – AUDIO 0xc – Reserve1
0x6 – TUNER2 0xd – Reserve2
0x7 – TUNER3 0xe – Free

Return
0 – Successful.
1 – Failed (Initialization was not called)

Description
This function is called to discover device roles that are connected to the MonsterX3
device via the HDMI cable. It is possible that a single device that is connected to the
MonnsterX3 device could have more than 1 role. For example, a DVR player could have
a role of DVR1 and TUNER1 at the same time. Please refer to the HDMI specification
for more detail. After this function is called, if a connected device has the appropriate
role, it will respond and the incoming CEC data timer/thread loop should immediately
detect this response to confirm the availability of this role.

SKNET Corporation
Confidential

10

int MX_CECMgr_HasReadData(BOOL *pbStatus)

Parameter
BOOL *pbStatus Return status to determine the availability of incoming

CEC data.
Valid only if function call is successful
TRUE – has incoming CEC data
FALSE – has no incoming CEC data

Return
0 – Successful.
1 – Failed (Initialization was not called)
3 – Invalid parameter

Description
This function must be called in a timer or a thread loop to constantly monitor for any
incoming CEC data. When the availability of incoming CEC data is detected,
MX_CECMgr_ReadData function should be called to retrieve the data. Even if the data
is not needed, MX_CECMgr_ReadData must be called to clear the incoming CEC data
buffer or otherwise, pbStatus will always return TRUE.

Please refer to “2. Development Guide” chapter on how to monitor for incoming CEC
data.

SKNET Corporation
Confidential

11

int MX_CECMgr_ReadData(BYTE *pbData, int *piNumData)

Parameter
BYTE *pbData Byte array which will be used to store incoming CEC

data.
int *piNumData Size of pbData byte array.

If the function call is successful, this parameter will
contain the actual number of bytes returned.

Return
0 – Successful.
1 – Failed (Initialization was not called)
3 – Invalid parameter
4 – Byte array size is too small to store all incoming CEC data

Description
This function is called to retrieve all incoming CEC Data. This function should only be
called when incoming CEC data availability is detected via MX_CECMgr_HasReadData.

Also, this function must always be called whenever there is incoming CEC data, even if
it is not needed otherwise MX_CECMgr_HasReadData will always return a positive

result.

Please refer to “2. Development Guide” chapter on how to monitor for incoming CEC
data.

SKNET Corporation
Confidential

12

int MX_CECMgr_WriteData(int iTargetDev, BYTE *pbData, int

*piNumData)

Parameter
int iTargetDev Target device role (0x1 to 0xe for specific target role or

0xf for broadcase)
BYTE *pbData Byte array which will be used to store incoming CEC

data.
int iNumData Size of pbData byte array.

Return
0 – Successful.
1 – Failed (Initialization was not called)
3 – Invalid parameter

Description
This function is called to send a CEC command. pbData should typically contain an
opcode and optionally one or more parameters, depending on what opcode is to be
sent.

Please refer to “2. Development Guide” chapter on how to send a CEC command.

